

This project has received funding from the European Union's H2020 research and innovation
programme under Grant Agreement No. 101033916.

European Building Sustainability
performance and energy certification

Hub

D3.2 - Report on the test
phase

1

Project no. 101033916

Project acronym: EUB SuperHub

Project title: European Building Sustainability performance and
energy certification Hub

Call: H2020-LC-SC3-B4E-4-2020

Start date of project: 01.06.2021.

Duration: 43 months

Deliverable title: D3.2 (Report on the test phase)

Due date of deliverable: 31. July 2024

Organisation name of lead contractor for this deliverable: FeliCITY-Tools
Engineering Ltd.

Name Organization

Bese Pál FeliCITY-Tools Engineering Ltd.,

Dissemination level

PU Public PU

Document history

History

Version Date Reason Revised by

01 14/07/2024 Draft for review GEO

02 31/07/2024 Final version FeliCity

2

Table of Contents

1 Introduction ..5

1.1 Purpose of this document .. 5

1.2 Scope of the testing ... 5

1.3 References .. 7

2 Definitions, acronyms, and abbreviations .. 7

3 Testing Objectives .. 8

3.1 Goals and Objectives.. 8

3.2 Success Criteria ...9

4 Testing Methodology ... 11

4.1 Overview of the System ... 11

4.1.1 FeliCity API .. 11

4.1.2 FeliCity Identity Provider .. 12

4.1.3 Digital Building Logbook ... 13

4.1.4 EUB SuperHub Web Service ... 13

4.1.5 FeliCity Cache Server .. 14

4.1.6 RabbitMQ-Based Queuing Service ... 14

4.1.7 Calculation units .. 15

4.2 Testing Strategy ... 15

4.2.1 Unit Testing ... 15

4.2.2 Integration Testing ... 16

4.2.3 System Testing .. 16

4.2.4 Performance Testing .. 16

4.2.5 Security Testing .. 16

4.2.6 Usability Testing ... 16

4.2.7 Compatibility Testing ... 17

4.2.8 Regression Testing ... 17

4.2.9 Test-Driven Development ... 17

4.3 Test Environment .. 17

4.3.1 Infrastructure Setup .. 17

4.3.2 Configuration Management ... 18

4.3.3 Test Data .. 18

4.3.4 Monitoring and Logging .. 18

3

4.3.5 Network Configuration ... 19

4.3.6 Security Measures ... 19

4.3.7 Backup and Recovery ... 20

4.4 Test Tools and Software Used ... 21

4.4.1 GitLab for Development and Tracking .. 21

4.4.2 MSTest Framework for Server-Side Testing ... 21

4.4.3 Jest for Client-Side Testing ... 21

4.4.4 BenchmarkDotNet for Performance Testing .. 22

4.4.5 Lighthouse testing .. 22

4.4.6 Cypress test cases .. 23

4.5 Roles and Responsibilities .. 24

5 Test Plan.. 25

5.1 Test Schedule .. 25

5.2 Test Case Development ... 25

5.3 Test Data Preparation ... 25

6 Test Execution ... 26

6.1 Test Execution Process ... 27

6.1.1 Continuous Integration and Testing .. 27

6.1.2 Unit and Integration Testing .. 27

6.1.3 Application-Level Testing ... 28

6.1.4 Execution and Reporting .. 28

6.2 Types of Tests Conducted .. 28

6.2.1 Unit Testing .. 28

6.2.2 Integration Testing .. 29

6.2.3 System Testing ... 29

6.2.4 End-to-end testing .. 30

6.3 Test Coverage .. 30

7 Test Results .. 31

7.1 Defects Identified .. 31

7.2 Severity and Priority of Defects ... 31

8 Issue Management ... 31

8.1 Defect Tracking Process .. 32

8.2 Resolution and Retesting ... 32

4

8.3 Alert integration .. 32

9 Analysis and Insights .. 32

9.1 Root Cause Analysis .. 32

9.2 Impact Analysis .. 33

9.3 Lessons Learned .. 33

10 Recommendations .. 33

10.1 Immediate Actions ... 33

10.2 Future Testing Improvements ... 33

11 Conclusion ... 33

11.1 Summary of Findings ... 34

11.2 Final Assessment ... 34

11.3 Next Steps ... 34

5

1 Introduction

1.1 Purpose of this document

The purpose of this document is to provide a comprehensive summary of
the testing phase conducted prior to the system's launch for beta testing.
This report aims to:

• Outline the scope and objectives of the testing activities.
• Detail the methodologies, tools, and environments used during the

testing process.
• Present the test plan, including the schedule, test cases, and data

preparation strategies.
• Describe the execution of various types of tests, such as unit,

integration, system, and end-to-end testing.
• Summarise the results obtained from the testing phase, including

identified defects and their severity.
• Highlight the issue management process, including defect tracking

and resolution.
• Analyse the insights gained from the testing phase, focusing on root

cause analysis, impact assessment, and lessons learned.
• Provide recommendations for immediate actions and future

improvements to enhance the system's quality and reliability.
• Conclude with a summary of findings, final assessment, and the next

steps to be taken.

This document serves as a reference for stakeholders to understand the
testing efforts undertaken, the challenges encountered, and the overall
readiness of the system for beta testing.

1.2 Scope of the testing

The scope of the testing phase for EUB SuperHub encompasses a thorough
evaluation of the system's functionalities, performance, security, and user
experience. The primary objectives of this testing phase are to identify and
resolve any defects, ensure the system meets its requirements, and verify
that it is ready for beta testing. Specifically, the scope includes:

• Functional Testing: Assessing each feature of the system to ensure it
operates according to the requirements specified in D2.3. This
includes verifying that all functions perform correctly and consistently
under various conditions.

• Performance Testing: Evaluating the system's responsiveness,
stability, and scalability. This involves stress testing, load testing, and
performance benchmarking to ensure the system can handle
expected and peak user loads without performance degradation.

6

• Security Testing: Identifying and addressing potential security
vulnerabilities. This includes vulnerability scanning, and security code
reviews to protect against unauthorised access, data breaches, and
other security threats.

• Usability Testing: Ensuring the system provides a user-friendly
experience. This includes evaluating the user interface, navigation,
and overall user satisfaction to identify areas for improvement.

• Compatibility Testing: Verifying that the system functions correctly
across different devices, browsers, and operating systems. This
ensures a consistent user experience regardless of the platform used.

• Regression Testing: Ensuring that new code changes do not
negatively impact existing functionalities. This involves re-running
previously conducted tests to verify that the system remains stable
and functional after updates.

• Integration Testing: Testing the interactions between different
modules and components of the system to ensure they work together
seamlessly. This is critical for identifying issues that may arise from
module dependencies and interactions.

• End-to-End Testing: Conducting comprehensive tests that simulate
real-world usage scenarios. This includes verifying the complete
workflow from start to finish to ensure the system behaves as
expected in a live environment.

The scope is designed to provide a holistic evaluation of the system, ensuring
all key aspects are tested and validated before progressing to the beta
testing phase. This approach aims to deliver a robust, reliable, and user-
friendly system to end-users.

7

1.3 References

• Testing in .NET
• OpenAPI standard
• D2.3 - The EUB SuperHub Platform modules: Features and functions
• D2.4 - The digital logbook, definition of data requirements, sources,

and collection process
• D3.1 – Report on the architecture and interoperability
• European Commission Digital Strategy
• GitLab
• NodeJS
• Redis in-memory database
• RabbitMQ messaging and streaming broker
• Jest – JavaScript Testing Framework
• MSTest - .NET Testing Framework
• BenchmarkDotNet
• Lighthouse testing
• Cypress – E2E Testing Framework

2 Definitions, acronyms, and abbreviations

CI/CD Continuous integration and delivery

DBL Digital building logbook

E2E End-to-end testing

ECDS European Commission Digital Strategy

HTTP Hypertext Transfer Protocol

OIDC OpenID Connect

PWA Progressive web apps

REST Representational state transfer

RESTful API that conforms to the constraints of REST
architectural style

SEO Search engine optimisation

TDD Test-Driven Development

WCAG Web Content Accessibility Guidelines

mailto:https://learn.microsoft.com/en-us/dotnet/core/testing/
https://www.openapis.org/
https://eubsuperhub.eu/assets/content/Deliverables/D2.3.pdf
https://eubsuperhub.eu/assets/content/Deliverables/D2.4.pdf
https://eubsuperhub.eu/assets/content/Deliverables/D2.4.pdf
https://eubsuperhub.eu/assets/content/Deliverables/D3.1.pdf
https://commission.europa.eu/publications/european-commission-digital-strategy_en
https://about.gitlab.com/
https://nodejs.org/en
https://redis.io/
https://www.rabbitmq.com/
https://jestjs.io/
https://learn.microsoft.com/en-us/dotnet/core/testing/unit-testing-mstest-intro
https://github.com/dotnet/BenchmarkDotNet
https://developer.chrome.com/docs/lighthouse/
https://www.cypress.io/

8

3 Testing Objectives

The testing phase is an important component of the system development
lifecycle, designed to verify that the system meets its specified
requirements, defined primarily in the deliverables of D2.3 (The EUB
SuperHub Platform modules: Features and functions) and D2.4 (The digital
logbook, definition of data requirements, sources, and collection process),
and is ready for deployment to beta testers. The objectives of this testing
phase are to evaluate the system's functionality, performance, security, and
usability. By establishing clear testing objectives, we aim to identify and
address any defects or issues that could impact the system's effectiveness
and reliability.

In this chapter, we will outline the specific goals and success criteria that
guided our testing efforts.

This chapter will cover:

• The primary goals of the testing phase, detailing what we aim to
achieve through our testing efforts.

• The success criteria that define the conditions under which the system
is considered to have passed the testing phase.

3.1 Goals and Objectives

The primary goals and objectives of the testing phase are to confirm that the
system is functional, reliable, and ready for deployment to beta testers. The
testing phase aims to validate that the system meets its specified
requirements and performs well under expected conditions. The specific
goals and objectives are collected in Table 1.

No. Title Description

#1 Verify functionality Ensure that all system features operate
as intended and conform to the
specified requirements.

#2 Measure performance Assess the system's performance under
normal and peak load conditions to
ensure it meets the required
performance benchmarks.

#3 Validate security Conduct security testing to identify
and mitigate potential vulnerabilities
and threats. Check whether the system
complies with relevant security
standards and best practices.

9

#4 Enhance user experience Evaluate the system's usability to
confirm it provides an intuitive and
user-friendly interface.

#5 Verify compatibility and
integration

Test the system across various devices,
browsers, and operating systems to
ensure compatibility and consistent
user experience. Verify that different
system modules and components
integrate seamlessly and function
correctly together.

#6 Validate end-to-end
workflows

Conduct end-to-end testing to
simulate real-world usage scenarios
and confirm that the system performs
as expected in a live environment.

#7 Establish regression
stability

Ensure that recent code changes do
not negatively impact existing
functionalities through rigorous
regression testing. Confirm that the
system remains stable and functional
after updates and modifications.

Table 1. Goals and objectives of the testing phase

By achieving these goals and objectives, we aim to deliver a robust and high-
quality system that meets user expectations and performs reliably in various
conditions. This testing approach helps in identifying potential issues early,
reducing risks, and ensuring a successful beta testing phase and
subsequent full deployment.

3.2 Success Criteria

The success criteria for the testing phase are defined to guarantee that the
system meets its quality standards and is ready for beta testing. These
criteria provide a clear benchmark against which the outcomes of the
testing activities can be measured. The success criteria include the following
key aspects:

No. Title Description

#1 Functional completeness All planned features and functionalities
must be fully implemented and
operational as defined in D2.3 and D2.4.
Each feature should pass all its

10

respective test cases without critical or
major defects.

#2 Performance metrics The system must meet predefined
performance benchmarks, including
response time, throughput, and
resource utilisation.

#3 Security compliance Security measures should comply with
the following directives:

• Web Application Security
Standard C(2018) 7283 final

• Web Applications Secure
Development Guidelines Version
3 - EC DIGIT SECURITY
ASSURANCE

• IT Vulnerability and Remediation
Management C(2018) 7284 final

#4 Usability standards The system should provide an intuitive
and user-friendly interface that meets
user experience standards.

#5 Compatibility and
integration

The system must be compatible with
various devices, browsers, and
operating systems as specified in the
requirements. All system components
and modules should integrate
seamlessly, with no significant
integration issues. Data should flow
correctly between integrated
components, maintaining consistency
and accuracy.

#6 End-to-end functionality End-to-end workflows should be tested
and validated to ensure they operate
smoothly from start to finish.

#7 Regression stability Regression tests should confirm that
recent changes or updates do not
introduce new defects or negatively
impact existing functionalities.

Table 2. Success criteria

11

4 Testing Methodology

This chapter covers the overall strategy, test environment setup, tools and
software utilised, and roles and responsibilities within the testing team.

Understanding the testing methodology provides insight into the planning,
execution, and management of testing activities. By detailing the testing
methodology, we aim to demonstrate the rigor and thoroughness of our
testing process, ensuring the system's readiness for beta testing.

4.1 Overview of the System

EUB SuperHub, as a software, is built on a microservices architecture, which
allows for modular development and scalability. Each microservice is
designed to handle specific functions, working together to provide the
overall functionality of the system. The key microservices playing a critical
role in the system are summarised below.

Figure 1 Home screen of the EUB SuperHub

4.1.1 FeliCity API

The FeliCity API is responsible for building-related geometry and energy
calculations. This service performs complex computations required for
managing building data, such as calculating energy consumption, analysing
building geometries, and providing data (e.g., climate data, building usage
profiles) for further processing and visualisation.

12

Figure 2 OpenAPI documentation of FeliCIty API

4.1.2 FeliCity Identity Provider

The FeliCity Identity Provider is an OpenID Connect (OIDC) server used for
authenticating users. It manages user identities and guarantees secure
access to the system by providing authentication tokens, enforcing security
policies, and integrating with other services to facilitate user management.

Figure 3 OpenAPI documentation of the FeliCity Identity API

13

4.1.3 Digital Building Logbook

The Digital Building Logbook (DBL) service stores and manages
comprehensive data about buildings. This includes maintenance records,
historical data, compliance documentation, and other relevant information
that contributes to the lifecycle management of building assets as defined
in the deliverable D2.4.

Figure 4 OpenAPI documentation of the EUB SuperHub DBL API

4.1.4 EUB SuperHub Web Service

The EUB SuperHub application itself is also a web service and acts as an
interface for integrating external data sources and services. It enables the
system to communicate with other platforms, exchange data, and provide
additional functionalities through APIs, enhancing the system's
interoperability and data richness.

14

Figure 5 OpenAPI documentation of the EUB SuperHub API

4.1.5 FeliCity Cache Server

The FeliCity cache server is a Redis-based central service used for temporal
data storage. It improves the system's performance by caching frequently
accessed data, reducing database load, and providing faster access to
transient data required for calculations and real-time processing.

This service is essential for complying with the constraints of a RESTful API.
For instance, when a building energy calculation is requested, the building
configuration is submitted as a HTTP POST request to create a resource on
the server. This resource is assigned to a universally unique identifier that is
generated by the cache server. This resource is then picked up by a
calculation unit, when the job manager distributed the calculation task.

Figure 6 FeliCity cache server in Redis Insight

4.1.6 RabbitMQ-Based Queuing Service

The RabbitMQ-based service handles job distribution within the system. It
facilitates asynchronous communication between microservices, ensuring
that tasks such as data processing, notifications, and other background jobs
are efficiently managed and executed without impacting the system's
responsiveness.

15

Figure 7 Exchange used for broadcasting status of simulations

4.1.7 Calculation units

Calculation intensive tasks, like building energy simulations, are performed
asynchronously when the capacity is available. Arbitrary number of
calculation units can join to the job queue for performing calculations in a
parallel manner.

4.2 Testing Strategy

The testing strategy for the system is designed to reach comprehensive
coverage and validation of all microservices and their interactions. The
strategy encompasses various types of testing, each targeting different
aspects of the system to ensure it meets the required standards of
functionality, performance, security, and usability.

The specific testing strategies need to be in line with the system’s
architecture and follow how it separates duties into classes, packages,
services, and applications.

4.2.1 Unit Testing

Unit testing focuses on validating the functionality of individual components
or modules within each microservice. By isolating each unit, we can verify
that it performs correctly in various scenarios. This helps in identifying and
fixing bugs early in the development process. Each service, such as the
FeliCity API, Identity Provider, DBL, and others, undergoes rigorous unit
testing to verify their individual functionalities.

16

4.2.2 Integration Testing

Integration testing examines the interactions between different services to
ensure they work together seamlessly. Given the microservice architecture,
it's crucial to validate the communication pathways, data flow, and
dependency management between services like the FeliCity API, cache
server, RabbitMQ-based service, the DBL, and others.

4.2.3 System Testing

System testing involves testing the entire system to confirm it meets the
specified requirements. This includes testing end-to-end workflows and
verifying that all integrated components function together as expected.
System testing helps in identifying issues that may not be apparent in unit
or integration testing, such as workflow interruptions or data
inconsistencies.

4.2.4 Performance Testing

Performance testing assesses the system's behaviour under various load
conditions. This includes stress testing, load testing, and scalability testing.
Key areas of focus are the system's response time, throughput, and resource
utilisation, particularly for services like the FeliCity API and cache server,
which handle significant data processing and storage operations.

4.2.5 Security Testing

At present, FeliCity does not have automated security testing integrated
into its CI/CD pipelines. Instead, security testing efforts are focused on
manual verification processes to ensure the system's alignment with the EC
Digital Strategy (ECDS). This involves ensuring that the system adheres to
the following key guidelines:

• Web Application Security Standard C(2018) 7283 final: Ensuring web
applications meet security standards to prevent common
vulnerabilities such as SQL injection, cross-site scripting (XSS), and
other exploits.

• Web Applications Secure Development Guidelines Version 3 - EC
DIGIT SECURITY ASSURANCE: Following secure development
practices to build robust and secure applications.

• IT Vulnerability and Remediation Management C(2018) 7284 final:
Identifying, managing, and mitigating vulnerabilities to minimize the
risk of security incidents.

4.2.6 Usability Testing

Usability testing evaluates the system's user interface and overall user
experience. This involves gathering feedback from real users to identify any

17

usability issues and areas for improvement. Ensuring a user-friendly
interface is critical for user acceptance and satisfaction.

4.2.7 Compatibility Testing

Compatibility testing ensures that the system works correctly across
different devices, browsers, and operating systems. This is important for
providing a consistent user experience regardless of the platform used. The
EUB SuperHub web service and other web-based components are tested
extensively for compatibility.

4.2.8 Regression Testing

Regression testing guarantees that recent changes or updates do not
negatively impact existing functionalities. This involves re-running
previously conducted tests to verify that the system remains stable and
functional after modifications. It is crucial for maintaining the integrity of the
system during continuous development and deployment.

4.2.9 Test-Driven Development

Test-Driven Development (TDD) is a software development approach where
tests are written before the actual code. During the development of the EUB
SuperHub, FeliCity adopted TDD to enhance the robustness and
maintainability of the system.

The TDD process followed at FeliCity included:

• Writing unit tests for each new feature or functionality before writing
the corresponding code.

• Running all tests frequently to ensure new changes do not introduce
any regressions.

• Refactoring the code based on test outcomes to improve design and
maintainability.

4.3 Test Environment

The test environment provides a controlled setting where the system can be
evaluated under conditions that closely mimic the production environment.
For the system built on microservices, the test environment is designed to
ensure each microservice is tested individually and in conjunction with
others to validate their interactions and overall system performance.

4.3.1 Infrastructure Setup

The test environment is hosted on a robust and scalable infrastructure that
mirrors the production setup. This includes multiple virtual machines
configured to replicate the distributed nature of the microservices
architecture. Each microservice is deployed on this infrastructure to provide
realistic testing conditions.

18

4.3.2 Configuration Management

Configuration management is handled across multiple levels to ensure
consistency, security, and efficiency. Different configuration management
techniques are employed for each test type to cater to the specific
requirements of unit, integration, and system testing.

For unit and integration testing, each package includes a sample
configuration file. These configurations are tailored specifically for
development and testing environments, ensuring that automated testing
infrastructure can execute tests defined within the package in isolated
contexts.

In staging and production environments, configuration management is
streamlined and secured through GitLab. During the automated
deployment process, GitLab handles the configuration values. This
guarantees that sensitive configuration details are managed securely,
reducing the risk of exposure and ensuring that only the correct,
environment-specific settings are applied.

4.3.3 Test Data

Each package within the system defines its own data model and validation
logic, making it essential for each package to independently handle the
generation of test data. This approach confirms that the test data aligns with
the specific requirements and constraints of each package, maintaining
consistency and reliability across the testing process.

To achieve this, each package is responsible for generating both valid and
purposely invalid test data to thoroughly test its functionality and validation
rules. The chosen technique to facilitate this is the implementation of a
required TestDataFactory service within each package. The
TestDataFactory service standardizes the creation of test data, ensuring
that it meets the package’s specific data model and validation criteria.

4.3.4 Monitoring and Logging

In line with standard .NET practices, logging is implemented using the
ILogger interface, providing flexible access to various logging providers. This
approach ensures that logs can be consistently and effectively managed
across different environments and scenarios.

Logging is performed at multiple levels to capture a wide range of
information:

• Debug: Detailed information useful during development and testing.
• Information: General operational events to track the system's

workflow.

19

• Warning: Indications of potential issues that do not immediately
affect system functionality.

• Error: Events that indicate significant problems that need to be
addressed.

• Critical: Severe issues that require immediate attention and could lead
to system failure.

During testing, the logging level is set to Debug to capture detailed
information about the system’s operation, facilitating thorough analysis and
troubleshooting. In the production environment, the logging level is set to
Error to focus on significant issues, ensuring that critical problems are
promptly identified without overwhelming the logs with less pertinent
information.

4.3.5 Network Configuration

Network configuration in the test environment is tailored to different
scenarios to reach optimal testing conditions. For automated integration
tests of individual packages, a basic network setup is used in an isolated local
environment. This simplifies testing, focusing on package interactions
without external network interference.

When testing APIs and applications, a local network configuration is used
without firewalls or load balancers. This provides a direct communication
path, allowing for accurate assessment of core functionality and
performance. Starting with these simplified network settings ensures
fundamental issues are resolved early, facilitating more comprehensive
testing in realistic network conditions later.

The network setup in the staging environment replicates the production
network configuration, including firewalls, load balancers, and network
segmentation. This way network-related issues, such as latency, bandwidth
constraints, and security vulnerabilities, can be identified and addressed
during testing.

4.3.6 Security Measures

Testing environments can inadvertently expose security flaws if they are not
protected. These vulnerabilities can be exploited to gain access to the
development or production environments, posing significant risks to the
overall system. Security measures applied to the test environment are as
follows:

4.3.6.1 Restricted Access
The test environment is only accessible from within the FeliCity corporate
network. This way external access is blocked, reducing the risk of
unauthorised access and potential security breaches. By limiting access to

20

trusted internal users, we can maintain tighter control over the testing
environment.

4.3.6.2 Two-Factor Authentication
Two-factor authentication (2FA) is enforced for all users accessing the test
environment. This additional layer of security requires users to provide two
forms of verification before gaining access, significantly enhancing security
by making it more difficult for unauthorised users to access the
environment, even if they have obtained a valid password.

4.3.6.3 Ephemeral Test Data and Data Clean-Up
Generated test data is not stored after tests are completed. Each test case
includes a clean-up method that removes all test data used by the test upon
completion. This combined approach ensures that any potentially sensitive
or confidential data used during testing does not persist beyond the testing
session, thereby reducing the risk of data leakage or unauthorized access to
test data. Maintaining a clean state for subsequent tests prevents any
potential data conflicts or security issues arising from leftover test data.

4.3.6.4 Secure Test Logs
Test logs are stored on a virtual machine that is not accessible from the
internet, so sensitive log information remains secure and is only accessible
to authorised personnel within the FeliCity network. By preventing internet
access, we mitigate the risk of log data being exposed or compromised.

4.3.7 Backup and Recovery

Ensuring backup and recovery mechanisms is for maintaining the integrity
and availability of the test environment. Test cases are designed not only for
the initial testing period preceding beta testing but also for future
validations. This forward-thinking approach necessitates reliable backup
and recovery processes to handle potential data loss and system failures.

Test and reference data that are not generated on-the-fly during tests are
backed up to prevent loss in case of test failures. This precaution allows for
quick restoration of data, ensuring continuity in testing and preventing
disruptions that could arise from data corruption or loss. Having backup
mechanisms in place also supports safe rollbacks to previous versions when
necessary, providing a safeguard against unexpected issues during testing.

Each virtual machine in the test environment is backed up separately,
regularly, and incrementally. Databases are backed up daily to make sure
that all data changes are preserved. Daily backups provide a reliable
recovery point, allowing for minimal data loss if restoration is required.

In addition to virtual machines and databases, the source code is backed up
along with the entire GitLab system, making all aspects of the development
and testing environment recoverable.

21

4.4 Test Tools and Software Used

The testing phase leverages a variety of tools and software to ensure
comprehensive coverage and efficient tracking of testing activities. The
selection of these tools is tailored to the specific needs of the system's
microservices architecture, ensuring that both server-side and client-side
components are thoroughly tested.

By leveraging these tools and frameworks, we set up a robust and
comprehensive testing process. Each tool is selected based on its strengths
and suitability for the specific testing requirements of the system's
microservices architecture. This approach helps in identifying and
addressing issues early in the development cycle, ensuring that the system
is reliable, performant, and ready for deployment.

4.4.1 GitLab for Development and Tracking

The entire development process is organised and tracked using FeliCity's
own GitLab instance. GitLab provides a robust platform for version control,
issue tracking, and continuous integration/continuous deployment (CI/CD).
This way all code changes are systematically tracked, and any issues
identified during testing are documented and managed efficiently. The use
of GitLab facilitates collaboration among team members, enabling
integration of development and testing activities.

4.4.2 MSTest Framework for Server-Side Testing

For server-side unit and integration testing in the .NET environment,
Microsoft's MSTest framework is utilised. MSTest provides a comprehensive
set of tools for writing and running tests, enabling developers to validate the
functionality of individual components and their interactions within the
system. Key features of MSTest include:

• Test case creation and execution
• Assertions to validate expected outcomes
• Test results reporting and analysis, including coverage reporting

4.4.3 Jest for Client-Side Testing

For client-side unit and integration testing in the NodeJS environment, Jest
is the testing framework of choice. Jest offers a powerful and easy-to-use
platform for testing JavaScript applications, providing features such as:

• Snapshot testing to ensure UI consistency
• Mocking and spies to simulate various scenarios
• Built-in code coverage reporting

22

Jest is employed to validate client-side logic and interactions, ensuring that
user interfaces and other client-side components function correctly and
deliver a seamless user experience.

4.4.4 BenchmarkDotNet for Performance Testing

To evaluate the performance of the API, the BenchmarkDotNet library is
used. BenchmarkDotNet is a powerful and flexible tool for benchmarking
.NET applications, offering features such as:

• Precise and accurate performance measurements
• Detailed reporting and analysis of benchmark results
• Support for various performance metrics, including execution time,

memory usage, and throughput

Using BenchmarkDotNet, we conduct performance tests on the FeliCity API
to verify it meets the required performance benchmarks and can handle
expected loads efficiently.

4.4.5 Lighthouse testing

Lighthouse testing is integrated into our CI/CD pipeline to evaluate the
performance, accessibility, best practices, SEO, and PWA capabilities of our
web applications. Using Google's open-source tool, we automatically
generate detailed reports to identify areas for improvement.

Lighthouse measures key performance indicators such as load times and
interactivity, checks accessibility against WCAG standards, and evaluates
adherence to best practices and SEO. For progressive web apps, it assesses
service worker implementation and offline functionality.

By incorporating Lighthouse testing, we continuously monitor and enhance
the performance, accessibility, and overall quality of our web applications,
ensuring they meet high standards and deliver excellent user experiences.

23

Figure 8 Lighthouse report showing low score for mobile tests

4.4.6 Cypress test cases

For end-to-end (E2E) testing, Cypress is integrated into our CI/CD pipeline,
automatically running tests with every code commit and merge request.
Tests are organized in a clear structure, written in JavaScript, and placed in
a specific directory in the code repository. They simulate user actions with
commands like cy.visit(), cy.get(), and cy.click(), and verify outcomes using
assertions.

24

Figure 9 E2E testing using Cypress

4.5 Roles and Responsibilities

FeliCity's small team faces significant challenges in testing due to the lack
of dedicated resources. Ideally, distinct roles for testing would ensure
thorough coverage, but our limited size means that team members must
juggle both development and testing tasks. This is a notable shortcoming
that impacts our effectiveness.

Developers handle unit and integration tests for their modules, which can
dilute their focus and compromise testing depth. System and end-to-end
testing are shared among the team, leading to potential gaps in coverage
and missed defects. This lack of dedicated testing resources remains a
significant constraint, affecting the thoroughness and reliability of our
testing process.

25

5 Test Plan

In this chapter, we outline the test plan designed to guide the testing phase
of the system. The test plan serves as a blueprint, detailing the schedule,
development of test cases, and preparation of test data. It guarantee that all
testing activities are systematically organised and executed, providing a
clear framework for evaluating the system's functionality, performance,
security, and usability.

5.1 Test Schedule

The test schedule was structured to support validation of each component
and the overall system within a defined timeline. Unit and integration
testing for both client-side and server-side components were conducted
concurrently with the implementation of specific components/packages.
This continuous testing approach allowed for early detection and resolution
of defects, ensuring that each component was validated before moving on
to the next phase.

In the final phase, spanning three weeks, the focus shifted to performance
and end-to-end testing. During this period, performance tests were
designed and specified. Simultaneously, end-to-end tests were developed
to simulate real-world usage scenarios.

5.2 Test Case Development

For both client-side and server-side components, test cases were designed
to cover a wide range of scenarios, including typical usage, edge cases, and
error conditions. Each test case included detailed steps, expected outcomes,
and criteria for success, facilitating systematic validation of each
component; following the Arrange-Act-Assert approach.

5.3 Test Data Preparation

The preparation of test data is a central aspect of the testing process,
ensuring that the system is evaluated under realistic and varied conditions.
FeliCity chose to use randomly generated data for each test case and run,
which offers significant advantages in terms of testing coverage and
robustness. By utilising random data, we can simulate a wider range of
scenarios, identify potential edge cases, and ensure that the system
performs reliably under diverse conditions.

For the test data to be effective, it must be semantically valid unless the test
case specifically aims to check the system's behaviour with invalid data. This
means that randomly generated data must adhere to the logical rules and
constraints of the domain. For instance, when testing the DBL, renovation
dates must always be after the building's construction date. Ensuring

26

semantic validity in the test data helps in accurately assessing the system's
functionality and prevents false positives that could arise from using illogical
data.

Maintaining valid relationships among collections of data is another critical
requirement. Random data generation must account for interdependencies
within the data set. For example, ensuring that energy consumption data
aligns with the building's specifications and usage patterns. By preserving
these relationships, the test data closely mirrors real-world scenarios,
providing more reliable and meaningful test results.

Despite the advantages of random data generation, some data cannot be
generated randomly due to the need for consistency and reference
accuracy. For instance, reference data such as country names, currencies,
and units of measure must remain consistent and accurate across all test
cases. In these instances, FeliCity's own test databases were utilised to
provide the necessary reference data. This way reference data is always
correct and consistent, avoiding discrepancies that could skew the test
results.

Using a combination of randomly generated data and fixed reference data
allows us to achieve comprehensive testing coverage without needing an
impractically large dataset. Randomly generated data introduces variability
and helps uncover edge cases, while fixed reference data ensures
consistency where it is crucial. This balanced approach allows for thorough
testing of the system's functionality, performance, and reliability across a
wide range of conditions.

Overall, the strategy of using semantically valid, randomly generated data,
combined with fixed reference data, provides a robust framework for
testing. It enables us to simulate realistic and varied scenarios, ensuring that
the system is rigorously evaluated and ready for deployment.

6 Test Execution

The test execution phase is designed to verify that all tests are run
continuously and efficiently, leveraging GitLab pipelines. Each merge
request and version tag triggers the execution of all relevant tests, ensuring
that any changes to the codebase do not introduce new defects.

Unit and integration tests are executed separately for each package,
providing focused validation of individual components. At the application
level, functional testing of endpoints, performance testing, and Lighthouse
testing for web performance and accessibility are performed automatically.
This testing strategy allows all aspects of the system are thoroughly

27

evaluated, from individual units to the overall application performance and
user experience.

Figure 10 Pipeline that run on the SRI merge request of the DBL

6.1 Test Execution Process

The test execution process is a structured and automated workflow
designed to ensure thorough and continuous testing of the system. By
integrating testing into the GitLab CI/CD pipelines, FeliCity can make sure
that each code change is rigorously validated before being merged into the
main codebase or deployed to production.

6.1.1 Continuous Integration and Testing

Every merge request and version tag in the GitLab repository triggers a
pipeline that includes various stages of testing. This pipeline is configured to
run a comprehensive suite of tests to catch defects early and maintain the
quality of the codebase. The continuous integration process helps in
identifying issues as soon as they are introduced, reducing the time and
effort required for debugging and fixing them later in the development
cycle.

6.1.2 Unit and Integration Testing

Unit tests are executed for each individual package, focusing on validating
the smallest components of the system, verifying that each unit performs as
expected in isolation. Integration tests, on the other hand, are conducted to
verify the interactions between different units within each package. This
approach ensures that components not only function correctly on their own
but also work seamlessly together.

28

6.1.3 Application-Level Testing

At the application level, a series of automated tests are performed to validate
the system's overall functionality and performance. Functional testing of the
API endpoints checks if the system's interfaces work correctly and return the
expected results. Performance testing, conducted using the
BenchmarkDotNet library, measures the system's responsiveness and
stability under various load conditions. Additionally, Lighthouse testing is
used to evaluate web performance, accessibility, and best practices,
ensuring that the application provides a high-quality user experience.

6.1.4 Execution and Reporting

The results of each test run are automatically reported back to the GitLab
interface, providing immediate feedback to developers. Any failed tests or
detected defects are logged, and developers are notified to address the
issues promptly. This automated feedback loop allows development team
to maintain a high level of code quality and quickly respond to any problems
that arise.

By incorporating continuous testing into the development workflow,
FeliCity ensures that its system is robust, reliable, and ready for deployment.
The automated test execution process not only saves time and resources but
also enhances the overall quality and stability of the system, providing
confidence in its readiness for beta testing and production use.

6.2 Types of Tests Conducted

6.2.1 Unit Testing

Unit testing forms the foundation of the testing process, focusing on the
smallest, individual components of the system to confirm they function
correctly in isolation. Each unit, typically a function or method within a
component, is tested independently to verify its behaviour and output
against expected results. This granular approach allows developers to
identify and fix issues at the earliest stage of the development process,
ensuring that each piece of code performs as intended before it is integrated
with other components.

For the server-side components developed in the .NET environment, unit
tests are written and executed using Microsoft's MSTest framework. MSTest
provides a suite of tools for defining, running, and analysing tests, making it
easier to validate the functionality of individual methods and classes. Each
unit test includes specific inputs and expected outputs, along with
assertions to confirm the correctness of the code's behaviour.

On the client-side, particularly within the NodeJS environment, unit tests are
written using Jest. Jest is a powerful testing framework designed to work

29

seamlessly with JavaScript, offering features such as mocking, spies, and
snapshot testing. By leveraging Jest, developers can create detailed unit
tests that cover various scenarios and edge cases, ensuring the robustness
of client-side logic and interactions.

Unit testing is conducted continuously throughout the development
process. Each time a new feature is added, or an existing one is modified, the
corresponding unit tests are updated and re-executed. This continuous
validation helps maintain a high level of code quality and prevents
regression issues, ensuring that new changes do not inadvertently break
existing functionality.

6.2.2 Integration Testing

Integration testing is a crucial step in the testing process, designed to ensure
that different units and components of the system work together
seamlessly. While unit testing verifies individual units in isolation,
integration testing focuses on the interactions between these units,
identifying any issues that may arise when they are combined.

For the server-side components, integration tests are conducted using the
MSTest framework. These tests validate the interactions between various
modules and services, such as the FeliCity API, Identity Provider, and cache
server. Integration testing verifies that data flows correctly between these
components, that API endpoints are correctly implemented, and that the
overall system behaves as expected when different parts are integrated. For
instance, when testing the DBL, integration tests confirm that data from the
FeliCity API is correctly processed and stored, and that user authentication
via the Identity Provider functions properly within the workflow.

On the client-side, integration tests are executed using Jest. These tests
verify that different parts of the user interface and client-side logic interact
correctly. This includes ensuring that data fetched from server-side APIs is
accurately processed and manipulated within the client application, and
that user actions trigger the appropriate client-side processes and updates.
For example, one integration test checks that the submission of building
element information correctly triggers the DBL API call, and processes the
response.

Integration testing is performed continuously as part of the CI/CD pipeline
in GitLab. Each merge request triggers a suite of integration tests to validate
that recent changes do not disrupt existing interactions between
components.

6.2.3 System Testing

System testing evaluates the integrated system to confirm it meets all
specified requirements for functionality, performance, and usability.

30

Functional testing verifies the operation of user interfaces, APIs, and
component interactions, while performance testing using
BenchmarkDotNet measures system responsiveness and scalability under
various loads.

6.2.4 End-to-end testing

End-to-end testing validates the complete workflow of the system, ensuring
that all integrated components function seamlessly together in real-world
scenarios. This testing involves simulating user activities from start to finish,
such as logging in via the FeliCity Identity Provider, submitting building data
through the FeliCity API, processing this data in the Digital Building
Logbook, and displaying the results.

6.3 Test Coverage

Test coverage measures the proportion of code executed during tests,
helping assess test thoroughness. There are various methods for measuring
coverage, including line, branch, and method coverage.

Line coverage, which measures the percentage of executed lines of code, is
the easiest to achieve but doesn’t guarantee comprehensive testing. Branch
coverage, measuring the percentage of decision points tested, offers better
insight by ensuring all possible outcomes are covered.

FeliCity has set a 70% threshold for branch coverage to better represent real-
life scenarios and edge cases, while maintaining over 90% of line coverage,
leading to more comprehensive tests, improving code resilience and overall
system quality.

Table 3. Coverage report for FeliCity.Geography package

31

7 Test Results

The testing phase of the EUB SuperHub project has yielded comprehensive
results that validate the system's functionality, performance, security, and
usability. Overall, the system’s services performed well across various testing
categories, demonstrating its readiness for beta testing. Functional tests
confirmed that all features operate as intended, with minor discrepancies
noted in specific edge cases. Performance tests, revealed that the system
meets the required benchmarks for response time and resource utilisation.

7.1 Defects Identified

During the testing phase, several defects were identified and categorised
based on their impact and urgency. A total of 37 defects were identified, with
the following distribution:

• Critical: 0
• Major: 12
• Minor: 25

No critical defects were identified, indicating that the system is free from
issues that could cause system crashes, thanks to the test-driven
development approach applied. Major defects included performance
bottlenecks under peak load conditions. Minor defects were mainly related
to coding standards, API documentation, and parameter binding.

7.2 Severity and Priority of Defects

Each defect was assessed for its severity and priority, ensuring that high-
impact issues were addressed first. The severity and priority were defined as
follows:

• Critical (High Priority): Defects causing system crashes, data
corruption, or significant security vulnerabilities.

• Major (Medium Priority): Defects affecting system performance,
usability, or integration, but not causing immediate operational
failure.

• Minor (Low Priority): Defects with minimal impact on functionality,
often cosmetic or related to non-critical features.

8 Issue Management

Effective issue management is critical to maintaining the quality and
reliability of the system. Our approach integrates tightly with the designated
GitLab CI/CD pipelines, ensuring that no source code is delivered if any
related tests fail. This rigorous process ensures that code changes do not
introduce new defects and that the system remains stable and functional.

32

8.1 Defect Tracking Process

The defect tracking process is integrated into the GitLab CI/CD pipelines.
Whenever a test fails, whether during unit, integration, system, or end-to-
end testing, a GitLab report is created. This includes details about the failed
test, the nature of the defect, and any relevant logs or screenshots.

8.2 Resolution and Retesting

Once an issue is created, a corresponding draft merge request is generated.
This draft includes the necessary code changes aimed at resolving the
defect. However, this merge request can only be merged if it meets all code
quality standards and passes the required unit and integration tests. This
process ensures that fixes are thoroughly vetted and validated before being
integrated into the main codebase. In some instances, the unit test itself
may need to be revised to correctly reflect the desired functionality and
provide accurate testing.

8.3 Alert integration

Despite achieving 100% branch coverage in tests, errors may still occur in the
production environment. To address this, we have implemented GitLab alert
integration, which ensures that all exceptions are logged and reported
automatically. This integration helps in promptly identifying and responding
to issues that arise in the production environment, maintaining high system
reliability and user satisfaction.

Table 4. Alert that shows an exception that occurred during the energy
simulation

9 Analysis and Insights

9.1 Root Cause Analysis

During the recent testing phase, several defects were identified, primarily
related to integration issues and data validation errors. For example, a
significant number of defects were traced back to inconsistencies in data
handling between the FeliCity API and the Digital Building Logbook (DBL).
These inconsistencies were often due to inadequate validation logic, which
allowed invalid data to pass through the system.

33

9.2 Impact Analysis

Impact analysis assesses the extent and severity of defects identified during
testing, helping prioritise remediation efforts and understand their potential
effects on the system's functionality and user experience.

During our previous testing phase, several high-impact defects were
discovered. For instance, integration issues between the FeliCity API—
specifically the FeliCity City Information Model package—and the DBL led to
data inconsistencies, making the system undeployable. This caused
significant delays because both packages had to be redesigned to conform
to the same EF Core representation.

The recent testing phase concluded with no such severe issues.

9.3 Lessons Learned

The primary lesson learned is that testing can sometimes appear complete
based on coverage metrics, while key aspects are not considered. During the
previous testing phase, data modelling passed the tests because all tests
used the EF Core In-Memory Database Provider. When the system was
deployed to the staging environment, the database provider had to be
replaced with the final one to access the MS SQL database. At that stage,
previously hidden issues blocked the deployment process.

10 Recommendations

The latest round of testing concluded with some considerations.

10.1 Immediate Actions

First, we need to increase end-to-end testing coverage to support validation
of user workflows. This involves developing additional test cases that cover
various user scenarios and integrating these tests into our CI/CD pipeline.

10.2 Future Testing Improvements

To enhance system security, we plan to integrate automated penetration
testing into our CI/CD pipeline. This will allow regular security assessments
with each code commit or merge request. Tools like OWASP ZAP and Burp
Suite will be configured to identify common vulnerabilities such as SQL
injection and XSS.

11 Conclusion

The conclusion chapter summarises the overall findings of the testing phase
and provides a final assessment of the system's readiness for deployment.

https://learn.microsoft.com/en-us/ef/core/providers/in-memory/?tabs=dotnet-core-cli

34

This includes an evaluation of test coverage, performance metrics, and areas
for improvement identified during testing.

11.1 Summary of Findings

The EUB SuperHub services have successfully passed the internal testing
conducted by FeliCity, demonstrating their functionality and reliability. Unit
and integration test coverage is high in terms of line coverage, ensuring that
most of the code has been executed during tests. However, branch coverage
could be improved to better capture all possible execution paths and
conditions within the code.

End-to-end testing coverage remains low and needs to be increased before
the beta testing phase concludes.

11.2 Final Assessment

Performance testing indicates that the system performs well overall. Energy
simulations are efficiently distributed, calculated, and stored, demonstrating
the system's capability to handle computationally intensive tasks. The
Digital Building Logbook (DBL) functions do not exhibit significant increases
in response time, confirming the system's scalability and efficiency under
load.

While some performance metrics on mobile devices are poor, it is important
to note that the application is not primarily designed for mobile use. Given
the complexity of the analysis tasks and the expected usage patterns, it is
unrealistic to expect users to perform such analysis on mobile devices.
Therefore, this issue is not considered to have a high impact on the system's
overall performance and user experience.

11.3 Next Steps

To ensure the system is fully prepared for beta testing and eventual
deployment, the following actions are recommended:

• Increase branch coverage in unit and integration tests to improve the
thoroughness of the testing process.

• Expand end-to-end testing coverage to validate complete user
workflows and integrate findings from these tests to address any
identified issues.

To prepare for beta testing, the system should first be deployed to the
staging environment. This allows for further validation in a setting similar to
production, helping to catch any remaining issues. Ensuring that reference
data is populated for all relevant countries is essential for the beta testing
phase.

35

Test users should be invited and provided with detailed test protocols. These
protocols must include specific tasks, expected outcomes, and reporting
guidelines to allow thorough testing and valuable feedback. By addressing
these areas, we enhance the system's reliability and performance, paving
the way for a successful deployment and positive user reception.

